Integration: Integration techniques
                    
                Trigonometric integrals
    
An integral that only contains trigonometric functions is called a trigonometric integral. These integrals can often be calculated using the substitution method. The challenge is knowing which substitution to use. In many cases, we can use the following rule.
Substitution for trigonometric integrals
Let #\blue{m} \geq 0# and #\orange{n} \geq 0# be integers. Then the integral #\int \sin(x)^{\blue{m}} \cdot \cos(x)^{\orange{n}} \; \dd x# can be solved using the substitution method with the following substitutions.
Let #\blue{m} \geq 0# and #\orange{n} \geq 0# be integers. Then the integral #\int \sin(x)^{\blue{m}} \cdot \cos(x)^{\orange{n}} \; \dd x# can be solved using the substitution method with the following substitutions.
- If #\blue{m}# is odd, then we use #\green{h(x)}=\green{\cos(x)}#.
 - If #\orange{n}# is odd, then we use #\green{h(x)}=\green{\sin(x)}#.
 - If #\blue{m}# and #\orange{n}# are even, then we use #\green{h(x)}=\green{2 \cdot x}#.
 
These substitutions are not always straightforward to apply, as we saw in the tab "Proof". Often, we need one or more of the following trigonometric identities to rewrite the integral.
Trigonometric identities
\[\sin(x)^2 + \cos(x)^2 = 1 \]
\[\cos(x)^2 = \frac{\cos(2 \cdot x)+1}{2}\]
\[\sin(x)^2 = \frac{1-\cos(2 \cdot x)}{2}\]
#\int \sin ^3\left(x\right) \,\dd x=# #{{\cos ^3\left(x\right)}\over{3}}-\cos \left(x\right) + C#
We apply the substitution method with #g(x)=x^2-1# and #h(x)=\cos \left(x\right)#, because in that case #g(h(x)) \cdot h'(x)=\sin ^3\left(x\right)# applies. This goes as follows:
\[\begin{array}{rcl}\displaystyle \int \sin ^3\left(x\right) \,\dd x&=& \displaystyle \int \left(\cos ^2\left(x\right)-1\right) \cdot -\sin \left(x\right) \, \dd x \\&&\phantom{xxx}\blue{\text{step 2: rewritten to the form }\int g(h(x)) \cdot h'(x) \, \dd x \text{ with } h'(x)=-\sin \left(x\right)} \\ &&\phantom{xxx}\blue{\text{used the trigonometric rule }\sin^2(x)=1-\cos^2(x)} \\ &=& \displaystyle \int \left(\cos ^2\left(x\right)-1 \right) \, \dd(\cos \left(x\right)) \\ &&\phantom{xxx}\blue{\text{step 3: rewritten using }h'(x)=\dd (h(x))} \\ &=& \displaystyle \int u^2-1 \, \dd u \\ &&\phantom{xxx}\blue{\text{step 4: substituted }\cos \left(x\right)=u} \\ &=& \displaystyle {{u^3}\over{3}}-u +C \\ &&\phantom{xxx}\blue{\text{step 5: found the antiderivative}} \\ &=& \displaystyle {{\cos ^3\left(x\right)}\over{3}}-\cos \left(x\right) +C \\ &&\phantom{xxx}\blue{\text{stap 6: substituted }u=\cos \left(x\right)}
\end{array}\]
We apply the substitution method with #g(x)=x^2-1# and #h(x)=\cos \left(x\right)#, because in that case #g(h(x)) \cdot h'(x)=\sin ^3\left(x\right)# applies. This goes as follows:
\[\begin{array}{rcl}\displaystyle \int \sin ^3\left(x\right) \,\dd x&=& \displaystyle \int \left(\cos ^2\left(x\right)-1\right) \cdot -\sin \left(x\right) \, \dd x \\&&\phantom{xxx}\blue{\text{step 2: rewritten to the form }\int g(h(x)) \cdot h'(x) \, \dd x \text{ with } h'(x)=-\sin \left(x\right)} \\ &&\phantom{xxx}\blue{\text{used the trigonometric rule }\sin^2(x)=1-\cos^2(x)} \\ &=& \displaystyle \int \left(\cos ^2\left(x\right)-1 \right) \, \dd(\cos \left(x\right)) \\ &&\phantom{xxx}\blue{\text{step 3: rewritten using }h'(x)=\dd (h(x))} \\ &=& \displaystyle \int u^2-1 \, \dd u \\ &&\phantom{xxx}\blue{\text{step 4: substituted }\cos \left(x\right)=u} \\ &=& \displaystyle {{u^3}\over{3}}-u +C \\ &&\phantom{xxx}\blue{\text{step 5: found the antiderivative}} \\ &=& \displaystyle {{\cos ^3\left(x\right)}\over{3}}-\cos \left(x\right) +C \\ &&\phantom{xxx}\blue{\text{stap 6: substituted }u=\cos \left(x\right)}
\end{array}\]
        Unlock full access 
            
        
        
            
        
    
    Teacher access
            Request a demo account. We will help you get started with our digital learning environment.
            
        Student access
            Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more. 
Or visit omptest.org if jou are taking an OMPT exam.
            
        Or visit omptest.org if jou are taking an OMPT exam.