Differential equations and Laplace transforms: Laplace-transformations
Laplace transforms of periodic functions
Also for periodic functions there is a rule for the calculation of the Laplace transform.
Periodic function Let #T# be a positive number. A function #f# on #\ivco{0}{\infty}# is called periodic with period #T# if, for all #t\ge0#, we have \[f(t+T) = f(t)\]
Here is a formula for the Laplace transform of a periodic function:
The Laplace transform of a periodic function If the Laplace transform of a periodic function #f# with period #T\gt0# exists, then it satisfies
\[\laplace(f) (s) = \frac{1}{1-\ee^{-Ts}}\cdot \int_0^T\ee^{-st}\cdot f(t)\,\dd t\]
#\laplace{(f)}(s) = # #{{\euler^{2\cdot s}-1}\over{s\cdot \euler^{2\cdot s}+s}}#
According to the Laplace-transform of a periodic function we have
\[\begin{array}{rcl}\laplace{(f)}(s) &=&\displaystyle\frac{1}{1-\ee^{-4 s}}\cdot \int_0^{4}\ee^{-st}\cdot f(t)\,\dd t\\
&&\phantom{xx}\color{blue}{\text{The Laplace transform of a periodic function}}\\
&=&\displaystyle\frac{1}{1-\ee^{-4 s}}\cdot \left(\int_0^{2}\ee^{-st}\,\dd t-\int_{2}^{4}\ee^{-st}\,\dd t\right)\\
&&\phantom{xx}\color{blue}{\text{definition of }f}\\
&=&\displaystyle\frac{1}{1-\ee^{-4 s}}\cdot\left( \left[-{{\euler^ {- s t }}\over{s}}\right]_0^{2}+\left[{{\euler^ {- s t }}\over{s}}\right]_{2}^{4}\right)\\
&&\phantom{xx}\color{blue}{\text{antiderivative calculated}}\\
&=&\displaystyle\frac{1}{1-\ee^{-4 s}}\cdot\left( {{1}\over{s}}-{{\euler^ {- 2 s }}\over{s}}+{{\euler^ {- 4 s }}\over{s}}-{{\euler^ {- 2 s }}\over{s}}\right)\\
&&\phantom{xx}\color{blue}{\text{antiderivatives evaluated at boundaries}}\\
&=&\displaystyle {{\euler^{2\cdot s}-1}\over{s\cdot \euler^{2\cdot s}+s}}\\
&&\phantom{xx}\color{blue}{\text{simplified}}\\
\end{array}\]
According to the Laplace-transform of a periodic function we have
\[\begin{array}{rcl}\laplace{(f)}(s) &=&\displaystyle\frac{1}{1-\ee^{-4 s}}\cdot \int_0^{4}\ee^{-st}\cdot f(t)\,\dd t\\
&&\phantom{xx}\color{blue}{\text{The Laplace transform of a periodic function}}\\
&=&\displaystyle\frac{1}{1-\ee^{-4 s}}\cdot \left(\int_0^{2}\ee^{-st}\,\dd t-\int_{2}^{4}\ee^{-st}\,\dd t\right)\\
&&\phantom{xx}\color{blue}{\text{definition of }f}\\
&=&\displaystyle\frac{1}{1-\ee^{-4 s}}\cdot\left( \left[-{{\euler^ {- s t }}\over{s}}\right]_0^{2}+\left[{{\euler^ {- s t }}\over{s}}\right]_{2}^{4}\right)\\
&&\phantom{xx}\color{blue}{\text{antiderivative calculated}}\\
&=&\displaystyle\frac{1}{1-\ee^{-4 s}}\cdot\left( {{1}\over{s}}-{{\euler^ {- 2 s }}\over{s}}+{{\euler^ {- 4 s }}\over{s}}-{{\euler^ {- 2 s }}\over{s}}\right)\\
&&\phantom{xx}\color{blue}{\text{antiderivatives evaluated at boundaries}}\\
&=&\displaystyle {{\euler^{2\cdot s}-1}\over{s\cdot \euler^{2\cdot s}+s}}\\
&&\phantom{xx}\color{blue}{\text{simplified}}\\
\end{array}\]
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.