Rules of differentiation: Rules of computation for the derivative
The product rule for differentiation
Product of two functions
Let #f# and #g# be two functions.
The product of #f# and #g# is the function that assigns to #x# the value #f(x)\cdot g(x)#. This function is denoted by #f\cdot g#, so the function rule is #(f\cdot g)(x) = f(x)\cdot g(x)#.
For example, if #f(x)=x+1# and #g(x)=x^3+1#, then #f\cdot g# is the function with function rule \[\left(f\cdot g\right)(x)=f(x)\cdot g(x) = \left(x+1\right)\cdot \left(x^3+1\right) = x^4+x^3+x+1\tiny.\]
Product rule for differentiation
The derivative #(f\cdot g)'# of the product #f\cdot g# is given by the productformula
\[(f\cdot g)' = f' \cdot g + f\cdot g'\tiny.\]
This means that #(f\cdot g)'(x) = f'(x)\cdot g(x) + f(x)\cdot g'(x)# for all #x#.
In order to prove the rule, we rewrite difference quotient as follows:
\[\begin{array}{rcl} \text{difference quotient}&=&\frac{f(x+h)g(x+h)-f(x)g(x)}{h}\\ &=& \frac{f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)-f(x)g(x)}{h}\\ &=& \frac{(f(x+h)-f(x))g(x)+f(x+h)(g(x+h)-g(x))}{h}\\ &=& \frac{f(x+h)-f(x)}{h}g(x)+f(x+h)\frac{g(x+h)-g(x)}{h}\\ \end{array}\]
Now we can calculate the limit of the difference quotient for #h\to 0#: \[\begin{array}{rcl} \left(f\cdot g\right)'(x) &=& \lim_{h\to 0}\frac{f(x+h)g(x+h)-f(x)g(x)}{h}\\ &=&\lim_{h\to 0}\left( \frac{f(x+h)-f(x)}{h}g(x)+f(x+h)\frac{g(x+h)-g(x)}{h}\right)\\ &=&\lim_{h\to 0}\left(\frac{f(x+h)-f(x)}{h}g(x)\right)+\lim_{h\to 0}\left(f(x+h)\frac{g(x+h)-g(x)}{h}\right)\\ &=&\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}\cdot \lim_{h\to 0} g(x)+\lim_{h\to 0}f(x+h)\cdot \lim_{h\to 0}\frac{g(x+h)-g(x)}{h}\\ &=& f'(x)\cdot g(x)+f(x)\cdot g'(x)\tiny.\\ \end{array}\]
The product rule gives that the derivative is equal to \[\frac{\dd}{\dd x}(x^2+2\cdot x-1)\cdot (x^3+2\cdot x+2) + (x^2+2\cdot x-1)\cdot\frac{\dd}{\dd x} (x^3+2\cdot x+2)\tiny.\]According to The derivative of a polynomial this is equal to
#(2x+2)\cdot (x^3+2\cdot x+2) + (x^2+2\cdot x-1)\cdot (3x^2+2)#, which can be rewritten as #2\cdot x^4+2\cdot x^3+4\cdot x^2+8\cdot x+4+3\cdot x^4+6\cdot x^3-x^2+4\cdot x-2#
and thus is equal to #5\cdot x^4+8\cdot x^3+3\cdot x^2+12\cdot x+2#.
Or visit omptest.org if jou are taking an OMPT exam.