Integration: Integration techniques
Known antiderivatives of some quotient functions
In the following pages, we will look at methods to find the antiderivative of some quotient functions. First, we'll look at two special antiderivatives.
\[\int \frac{1}{x^2+1} \; \dd x=\arctan(x)+\green C\]
Example
#\begin{array}{rcl}\displaystyle \int \frac{3}{x^2+1} \; \dd x &=& 3 \displaystyle \int\frac{1}{x^2+1} \; \dd x \\ &=& 3 \arctan(x) + \green C\end{array}#
\[\int \frac{1}{\sqrt{1-x^2}} \; \dd x=\arcsin(x)+\green C\]
Example
#\begin{array}{rcl}\displaystyle \int \frac{2}{\sqrt{1-x^2}} \; \dd x &=& 2 \displaystyle \int\frac{1}{\sqrt{1-x^2}} \; \dd x \\ &=& 2 \arcsin(x) + \green C\end{array}#
#\int {{1}\over{4\cdot x^2+1}} \,\dd x=# #{{\arctan \left(2\cdot x\right)}\over{2}} + C#
#\begin{array}{rcl}\displaystyle \int {{1}\over{4\cdot x^2+1}} \; \dd x &=& \displaystyle \int \frac{1}{2} \frac{1}{(2\cdot x)^2+1} \; \dd(2\cdot x) \\&&\phantom{xxx}\blue{\text{rewritten so we can substitute }} \\ &=& \displaystyle \int \frac{1}{2} \cdot {{1}\over{u^2+1}} \; \dd u \\&&\phantom{xxx}\blue{\text{substituting }2\cdot x=u} \\ &=& \frac{1}{2} \cdot \arctan \left(u\right) +C\\&&\phantom{xxx}\blue{\text{found the antiderivative}} \\ &=&\displaystyle {{\arctan \left(2\cdot x\right)}\over{2}} +C \\&&\phantom{xxx}\blue{\text{substituting }u=2\cdot x} \end{array}#
#\begin{array}{rcl}\displaystyle \int {{1}\over{4\cdot x^2+1}} \; \dd x &=& \displaystyle \int \frac{1}{2} \frac{1}{(2\cdot x)^2+1} \; \dd(2\cdot x) \\&&\phantom{xxx}\blue{\text{rewritten so we can substitute }} \\ &=& \displaystyle \int \frac{1}{2} \cdot {{1}\over{u^2+1}} \; \dd u \\&&\phantom{xxx}\blue{\text{substituting }2\cdot x=u} \\ &=& \frac{1}{2} \cdot \arctan \left(u\right) +C\\&&\phantom{xxx}\blue{\text{found the antiderivative}} \\ &=&\displaystyle {{\arctan \left(2\cdot x\right)}\over{2}} +C \\&&\phantom{xxx}\blue{\text{substituting }u=2\cdot x} \end{array}#
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.