Integration: Antiderivatives
The antiderivative of a power function
As with differentiation, we use rules to determine the antiderivative of standard functions when integrating. We will first look at the antiderivative of a power function.
For #\orange n\neq -1#:
\[\int x^\orange {n}\;\dd x = \frac{1}{\orange n+1}x^{\orange n+1} + \green C \]
Example
#\begin{array}{rcl}
\displaystyle \int x^\orange 4 \;\dd x &=&\dfrac{1}{\orange 4+1}x^{\orange 4+1} + \green C \\
&=&\dfrac 15 x^5 + \green C
\end{array}#
#\begin{array}{rcl}\displaystyle \int x^2 \; \dd x
&=&\displaystyle \frac{1}{2+1} x^{2+1}+C \\ &&\displaystyle \phantom{xxx}\blue{\text{rule of calculation } \int x^{n} \; \dd x = \displaystyle\frac{1}{n+1} x^{n+1} + C}\\
&=&\displaystyle {{x^3}\over{3}} +C \\ &&\phantom{xxx}\blue{\text{simplified}}
\end{array}#
Because we only asked for one antiderivative, we can now choose #C=0#. This gives:
\[F(x)={{x^3}\over{3}}\]
Or visit omptest.org if jou are taking an OMPT exam.