Functions: Power functions
                    
                Equations with power functions
    
In quadratic equations, we have seen how to solve an equation #x^2=c#. With the same procedure, we will use higher degree roots to solve an equation #x^n=c#.
The solutions to the equation #x^\orange{n}=\blue{c}# are dependent on the values of #\orange n# and #\blue c#.
| #\blue{c} \gt 0# | #\blue{c}=0# | #\blue{c} \lt 0# | |
| #\orange{n}# is even | 
 Two solutions: #x=-\sqrt[\orange{n}]{\blue{c}} \lor x=\sqrt[\orange{n}]{\blue{c}}#  | 
 One solution: #x=0#  | 
 No solutions 
  | 
| #\orange{n}# is odd | 
 One solution: #x=\sqrt[\orange{n}]{\blue{c}}#  | 
 One solution: #x=0#  | 
 One solution: #x=\sqrt[\orange{n}]{\blue{c}}#  | 

In the examples, we see that you can reduce many equations to the form #x^\orange{n}=\blue{c}# and then solve them.
#x=\frac{1}{5}\sqrt{15} \lor x=-\frac{1}{5}\sqrt{15}#
#\begin{array}{rcl}5\, x^{2}+5&=& 8 \\
&&\phantom{xxx}\blue{\text{the equation we need to solve}} \\
5\, x^{2}&=&3 \\
&&\phantom{xxx}\blue{\text{both sides minus }5} \\
x^{2} &=& {{3}\over{5}} \\
&&\phantom{xxx}\blue{\text{both sides divided by }5} \\
x=\sqrt[2]{{{3}\over{5}}} &\lor& x=-\sqrt[2]{{{3}\over{5}}} \\
&&\phantom{xxx}\blue{\text{both sides taken the }2 \text{-th root}}\\
x=\frac{1}{5}\sqrt{15} &\lor& x=-\frac{1}{5}\sqrt{15}\\
&&\phantom{xxx}\blue{\text{simplified}} \end{array}#
#\begin{array}{rcl}5\, x^{2}+5&=& 8 \\
&&\phantom{xxx}\blue{\text{the equation we need to solve}} \\
5\, x^{2}&=&3 \\
&&\phantom{xxx}\blue{\text{both sides minus }5} \\
x^{2} &=& {{3}\over{5}} \\
&&\phantom{xxx}\blue{\text{both sides divided by }5} \\
x=\sqrt[2]{{{3}\over{5}}} &\lor& x=-\sqrt[2]{{{3}\over{5}}} \\
&&\phantom{xxx}\blue{\text{both sides taken the }2 \text{-th root}}\\
x=\frac{1}{5}\sqrt{15} &\lor& x=-\frac{1}{5}\sqrt{15}\\
&&\phantom{xxx}\blue{\text{simplified}} \end{array}#
        Unlock full access 
            
        
        
            
        
    
    Teacher access
            Request a demo account. We will help you get started with our digital learning environment.
            
        Student access
            Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more. 
Or visit omptest.org if jou are taking an OMPT exam.
            
        Or visit omptest.org if jou are taking an OMPT exam.