Systems of linear equations: Two equations with two unknowns
                    
                Solving systems of linear equations by substitution
    
The solution of a system corresponds to the intersection point of the lines which represent the two linear equations.
Graphic
| 
 Procedure  | 
Example | |
| 
 When solving a system of two linear equations with two unknowns using the substitution method, we use the following procedure.  | 
 Solve the following system: #\left\{\begin{array}{rcl}2 x +4 y+5&=& 0 \\ -3 x +2 y -4&=& 0 \end{array} \right.#  | 
|
| Step 1 | 
 In the first equation, express #x# in #y# by reduction. In other words, write the first equation in the form #x=\ldots#.  | 
 #\left\{\begin{array}{c}x=-2 y-\frac{5}{2} \\-3 x +2 y -4=0 \end{array} \right.#  | 
| Step 2 | 
 Substitute the obtained expression for #x# in the second equation, such that the second equation only contains unknown #y#.  | 
 #\left\{\begin{array}{c}x=-2 y-\frac{5}{2} \\-3 \cdot \left(-2 y - \frac{5}{2}\right) +2 y -4=0 \end{array} \right.#  | 
| Step 3 | 
 Solve the equation from step 2 for #y#.  | 
 #\begin{array}{rcl}-3 \cdot \left(-2 y - \frac{5}{2}\right) +2 y -4&=&0 \\6 y+\frac{15}{2} +2 y -4&=&0 \\8 y + \frac{7}{2}&=&0 \\8 y &=&-\frac{7}{2}\\y &=&-\frac{7}{16} \end{array}#  | 
| Step 4 | 
 Determine #x# using the first equation from step 1 by substituting the value for #y# found in step 3.  | 
 #\begin{array}{rcl}   | 
| Step 5 | 
 Give the answer in the form \[\lineqs{ x & =\;\; \ldots \\ y &=\;\; \ldots }\]  | 
 #\left\{\begin{array}{rcl}x &=&-\frac{13}{8} \\ y &=&-\frac{7}{16} \end{array}\right.#  | 
#\lineqs{x&=&\displaystyle{{77}\over{50}}\cr y&=&\displaystyle{{61}\over{50}}\cr }#
| Step 1 | We reduce the first equation to the form #x=\ldots#. We find: \[\lineqs{x&=&7\cdot y-7\cr  8\cdot x-6\cdot y&=&5\cr }\]  | 
| Step 2 | We replace the first equation in the second one. We find: \[\lineqs{x&=&7\cdot y-7\cr 8\cdot\left(7\cdot y-7\right)-6\cdot y&=&5\cr }\]  | 
| Step 3 | With help of expanding the brackets, simplification and reduction, we can solve the second equation for unknown #y#. This is done in the following way: \[\begin{array}{rcl}&\lineqs{x&=&7\cdot y-7\cr 8\cdot\left(7\cdot y-7\right)-6\cdot y&=&5\cr }& \\&&\phantom{xxx}\blue{\text{the system we need to solve}} \\ &\lineqs{x&=&7\cdot y-7\cr 56\cdot y-56-6\cdot y&=&5\cr }& \\&&\phantom{xxx}\blue{\text{brackets expanded}} \\ &\lineqs{x&=&7\cdot y-7\cr 50\cdot y-56&=&5\cr }& \\&&\phantom{xxx}\blue{\text{simplified}} \\ &\lineqs{x&=&7\cdot y-7\cr 50\cdot y&=&61\cr }& \\&&\phantom{xxx}\blue{\text{both sides of the second equation minus }-56} \\ &\lineqs{x&=&7\cdot y-7\cr y&=& \displaystyle {{61}\over{50}}\cr }& \\ &&\phantom{xxx}\blue{\text{both sides of the second equation divided by }50} \end{array}\] Hence, the #y#-value of the solution is #y=\displaystyle{{61}\over{50}}#.  | 
| Step 4 | We now determine #x# by substituting #y={{61}\over{50}}# in the first equation. This is done in the following way: \[\begin{array}{rcl}&\lineqs{x&=&\displaystyle 7\cdot {{61}\over{50}}-7\cr y&=&\displaystyle{{61}\over{50}}\cr }& \\ &&\phantom{xxx}\blue{y=\displaystyle {{61}\over{50}} \text{ substituted in the first equation}} \\ &\lineqs{x&=&\displaystyle{{77}\over{50}}\cr y&=&\displaystyle{{61}\over{50}}\cr}\\ &&\phantom{xxx}\blue{\text{calculated}} \\ \end{array}\]  | 
Hence, the solution of the system is: \[\lineqs{x&=&\displaystyle{{77}\over{50}}\cr y&=&\displaystyle{{61}\over{50}}\cr }\]
Or visit omptest.org if jou are taking an OMPT exam.