Functions: Limits and asymptotes
Horizontal asymptotes
Asymptotes and limits have a lot in common. We will investigate how we can use the definition of a limit to find horizontal asymptotes.
Horizontal asymptotes
The function #\blue{f(x)}# has a horizontal asymptote #y=\green a# to infinity if #\lim_{x \to \infty}\blue{f(x)}=\green a#.
This intuitively means: when #x# gets really big, #\blue{f(x)}# gets arbitrarily close to value #\green a#.
Similarily #\blue{f(x)}# has a horizontal asymptote #y=\green a# to minus infinity if #\lim_{x \to -\infty}\blue{f(x)}=\green a#.
This intuitively means: when #x# gets really small, #\blue{f(x)}# gets arbitrarily close to value #\green a#.
Example
#\blue{f(x)}=\blue{\frac{1}{x+1}}#
has a horizontal asymptote #y=\green0#
to infinity, because
#\lim_{x \to \infty} \blue{\frac{1}{x+1}}=\green0#
To find the horizontal asymptote of #f(x)# in infinity, we calculate the following limit:
\[\begin{array}{rcl}
\displaystyle \lim_{x\rightarrow \, \infty } f(x)
&=& \displaystyle \lim_{x\rightarrow \, \infty } {{2 x^2+5 x+9}\over{4 x^2-6 x}}\\
&& \qquad \blue{\text{function } f(x)=\frac{p(x)}{q(x)} \text{ substituted}}\\
&=& \displaystyle \lim_{x\rightarrow \, \infty } \frac{x^2\cdot\left({{5}\over{x}}+{{9}\over{x^2}}+2\right)}{x^2\cdot\left(4-{{6}\over{x}}\right)}\\
&& \qquad \blue{\text{the degree of } q(x) \text{ equals }2 \text{, so } x^2 \text{ is factored out}}\\
&=& \displaystyle \lim_{x\rightarrow \, \infty } \frac{{{5}\over{x}}+{{9}\over{x^2}}+2}{4-{{6}\over{x}}}\\
&& \qquad \blue{\text{ simplified}}\\
&=& \displaystyle\frac{2}{4}\\
&& \qquad \blue{ \text{calculated}}\\
&=& \displaystyle {{1}\over{2}}\\
&& \qquad \blue{ \text{simplified}}\\
\end{array}\]
The limit is #{{1}\over{2}}# , so the horizontal asymptote in infinity is #y={{1}\over{2}}#.
Similarly, we find
\[\displaystyle \lim_{x\rightarrow \, -\infty } f(x)= {{1}\over{2}},\]
so the horizontal asymptote in minus infinity is #y={{1}\over{2}}#.
Or visit omptest.org if jou are taking an OMPT exam.