Matrix calculus: Rank and inverse of a matrix
Invertibility and rank
Previously we have seen some invertibility criteria for linear maps. Thanks to the theorem Linear map determined by the image of a basis this also provides invertibility criteria for matrices. We will add another criterium, in terms of the rank.
Invertiblity and rank
Let #n# be a natural number. For each #(n\times n)#-matrix #A# the following statements are equivalent:
- The rank of #A# is #n#
- The rows of #A# are independent
- The columns of #A# are independent
- The reduced echelon form of #A# is the identity matrix
- The matrix #A# is invertible
Yes
We will approach this just like inverting a matrix: we augment the matrix with an identity matrix and apply Gaussian elimination:
\[\begin{aligned}\left(\begin{array}{ccc|ccc} 1&1&5&1 & 0 & 0 \\ -1&15&-13&0 &1 &0\\ 1&5&-13&0 &0 &1\\ \end{array} \right)&\sim \left( \begin{array}{ccc|ccc} 1 &1&5&1 & 0 & 0\\ 0 &16&-8&1& 1 & 0 \\ 0 &4&-18&-1& 0 & 1 \\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} \mbox{}\\ R_2 \to R_2 +R_1\\ R_3 \to R_3 - R_1 \end{array}}}\\ &\sim \left( \begin{array}{ccc|ccc} 1 &1&5 &1 & 0 & 0 \\ 0 &1 &-\frac{1}{2}&\frac{1}{16}&\frac{1}{16} &0 \\ 0 &4&-18&-1& 0 & 1 \\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} \mbox{}\\ R_2 \to \frac{1}{16}R_2\\ \mbox{} \end{array}}}\\ &\sim \left( \begin{array}{ccc|ccc} 1 &0 &\frac{11}{2}&\frac{15}{16}&-\frac{1}{16}&0 \\ 0 &1 &-\frac{1}{2}&\frac{1}{16}&\frac{1}{16}&0 \\ 0 &0 &-16&-\frac{5}{4}&-\frac{1}{4}&1\\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} {}R_1\to R_1-R_2\\ \mbox{}\\ R_3\to R_3 -4R_2 \end{array}}}\\ &\sim \left( \begin{array}{ccc|ccc} 1 &0 &\frac{11}{2}&\frac{15}{16}&-\frac{1}{16}&0\\ 0 &1 &-\frac{1}{2}&\frac{1}{16}&\frac{1}{16}&0\\ 0 &0 &1 &\frac{5}{64}&\frac{1}{64}&-\frac{1}{16} \\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} {}\\ {}\\ R_3\to -\frac{1}{16}R_3 \end{array}}}\\ &\sim \left( \begin{array}{ccc|ccc} 1 &0 &0 &\frac{65}{128}&-\frac{19}{128}&\frac{11}{32}\\ 0 &1 &0 &\frac{13}{128}&\frac{9}{128}&-\frac{1}{32}\\ 0 &0 &1 &\frac{5}{64}&\frac{1}{64}&-\frac{1}{16} \\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} {}R_1 \to R_1 - \frac{11}{2}R_3\\ R_2 \to R_2 +\frac{1}{2}R_3\\ {} \end{array}}} \end{aligned} \] The left-hand matrix of the result has rank 3. Hence, the answer is: Yes.
We will approach this just like inverting a matrix: we augment the matrix with an identity matrix and apply Gaussian elimination:
\[\begin{aligned}\left(\begin{array}{ccc|ccc} 1&1&5&1 & 0 & 0 \\ -1&15&-13&0 &1 &0\\ 1&5&-13&0 &0 &1\\ \end{array} \right)&\sim \left( \begin{array}{ccc|ccc} 1 &1&5&1 & 0 & 0\\ 0 &16&-8&1& 1 & 0 \\ 0 &4&-18&-1& 0 & 1 \\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} \mbox{}\\ R_2 \to R_2 +R_1\\ R_3 \to R_3 - R_1 \end{array}}}\\ &\sim \left( \begin{array}{ccc|ccc} 1 &1&5 &1 & 0 & 0 \\ 0 &1 &-\frac{1}{2}&\frac{1}{16}&\frac{1}{16} &0 \\ 0 &4&-18&-1& 0 & 1 \\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} \mbox{}\\ R_2 \to \frac{1}{16}R_2\\ \mbox{} \end{array}}}\\ &\sim \left( \begin{array}{ccc|ccc} 1 &0 &\frac{11}{2}&\frac{15}{16}&-\frac{1}{16}&0 \\ 0 &1 &-\frac{1}{2}&\frac{1}{16}&\frac{1}{16}&0 \\ 0 &0 &-16&-\frac{5}{4}&-\frac{1}{4}&1\\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} {}R_1\to R_1-R_2\\ \mbox{}\\ R_3\to R_3 -4R_2 \end{array}}}\\ &\sim \left( \begin{array}{ccc|ccc} 1 &0 &\frac{11}{2}&\frac{15}{16}&-\frac{1}{16}&0\\ 0 &1 &-\frac{1}{2}&\frac{1}{16}&\frac{1}{16}&0\\ 0 &0 &1 &\frac{5}{64}&\frac{1}{64}&-\frac{1}{16} \\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} {}\\ {}\\ R_3\to -\frac{1}{16}R_3 \end{array}}}\\ &\sim \left( \begin{array}{ccc|ccc} 1 &0 &0 &\frac{65}{128}&-\frac{19}{128}&\frac{11}{32}\\ 0 &1 &0 &\frac{13}{128}&\frac{9}{128}&-\frac{1}{32}\\ 0 &0 &1 &\frac{5}{64}&\frac{1}{64}&-\frac{1}{16} \\ \end{array} \right) &{\color{blue}{\begin{array}{ccc} {}R_1 \to R_1 - \frac{11}{2}R_3\\ R_2 \to R_2 +\frac{1}{2}R_3\\ {} \end{array}}} \end{aligned} \] The left-hand matrix of the result has rank 3. Hence, the answer is: Yes.
Row reduction of #A# augmented with the #(3\times3)#-identity matrix not only shows that #A# is invertible, but also that the inverse is equal to the right-hand #(3\times3)#-matrix of the result.
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.