Functions: Fractional functions
Inverse of linear fractional function
We have seen that determining the inverse function is the same as isolating the variable #x# in a formula of the form #y=\ldots#. Now we will investigate how to do that for linear fractional functions.
Procedure We determine the inverse function of the linear fractional function #\green{y}=\frac{a\blue{x}+b}{c\blue{x}+d}# with #a#, #b#, #c# and #d# as numbers. 
Example #\green{y}=\frac{2\blue{x}5}{3\blue{x}+2}# 

Step 1  Multiply by the denominator of the fraction: #c\blue{x}+d#.  #\green{y} \left(3\blue{x}+2\right)=2\blue{x}5# 
Step 2  Expand the brackets.  #3\blue{x}\green{y}+2 \green{y}=2\blue{x}5# 
Step 3  By means of reduction move the terms without #x# to the right and the terms with a #x# to the left hand side.  #3\blue{x}\green{y}2\blue{x}=2 \green{y}5# 
Step 4  Move #x# outside brackets.  #\blue x \left(3 \green{y}2\right)=2 \green{y}5# 
Step 5  Divide by what's in between the brackets, so that we only have #x# at the left hand side.  #\blue x=\frac{2 \green{y}5}{3 \green{y}2}# 
Step 6 
Swap the #\blue x# into a #\green y# and the #\green y# into a #\blue x# to get the inverse function. 
#\green y=\frac{2 \blue{x}5}{3 \blue{x}2}# 
Isolate #x# in
\[y={{3\cdot x8}\over{5\cdot x8}}\]
\[y={{3\cdot x8}\over{5\cdot x8}}\]
#x={{8\cdot y8}\over{5\cdot y+3}}#
#\begin{array}{rcl}
y&=&{{3\cdot x8}\over{5\cdot x8}} \\ &&\phantom{xxx}\blue{\text{the original function }}\\
y \cdot \left(5\cdot x8\right)&=& 3\cdot x8 \\ &&\phantom{xxx}\blue{\text{both sides divided by }5\cdot x8}\\
5\cdot x\cdot y8\cdot y&=&3\cdot x8 \\ &&\phantom{xxx}\blue{\text{brackets expanded}}\\
5\cdot x\cdot y+3\cdot x &=&8\cdot y8 \\&&\phantom{xxx}\blue{\text{terms with } x \text{ to the left hand side, terms without }x \text{ to the right hand side }}\\
x\cdot \left(5\cdot y+3\right) &=& 8\cdot y8 \\ &&\phantom{xxx}\blue{x \text{ moved outside brackets}}\\
x&=&{{8\cdot y8}\over{5\cdot y+3}} \\ &&\phantom{xxx}\blue{\text{divided by }5\cdot y+3}\\
\end{array}#
#\begin{array}{rcl}
y&=&{{3\cdot x8}\over{5\cdot x8}} \\ &&\phantom{xxx}\blue{\text{the original function }}\\
y \cdot \left(5\cdot x8\right)&=& 3\cdot x8 \\ &&\phantom{xxx}\blue{\text{both sides divided by }5\cdot x8}\\
5\cdot x\cdot y8\cdot y&=&3\cdot x8 \\ &&\phantom{xxx}\blue{\text{brackets expanded}}\\
5\cdot x\cdot y+3\cdot x &=&8\cdot y8 \\&&\phantom{xxx}\blue{\text{terms with } x \text{ to the left hand side, terms without }x \text{ to the right hand side }}\\
x\cdot \left(5\cdot y+3\right) &=& 8\cdot y8 \\ &&\phantom{xxx}\blue{x \text{ moved outside brackets}}\\
x&=&{{8\cdot y8}\over{5\cdot y+3}} \\ &&\phantom{xxx}\blue{\text{divided by }5\cdot y+3}\\
\end{array}#
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.