Numbers: Fractions
Division of fractions
Division of fractions
The general rule for division of fractions is: dividing by a fraction is equal to multiplying by the reciprocal of the fraction. This means that if you want to divide by #\frac{\orange{3}}{\blue{4}}#, you need to multiply by #\frac{\blue{4}}{\orange{3}}#.
We can write:
\[\begin{array}{rcl} \dfrac{\orange{\text{numerator}_1}}{\blue{\text{denominator}_1}} : \dfrac{\orange{\text{numerator}_2}}{\blue{\text{denominator}_2}} &=& \dfrac{\orange{\text{numerator}_1}}{\blue{\text{denominator}_1}}\times\dfrac{\blue{\text{denominator}_2}}{\orange{\text{numerator}_2}} \end{array}\]
Written as a fraction of fractions, we have:
\[\begin{array}{rcl} \frac{\left(\tfrac{\orange{\text{numerator}_1}}{\blue{\text{denominator}_1}}\right)}{\left(\tfrac{\orange{\text{numerator}_2}}{\blue{\text{denominator}_2}}\right)} &=& \dfrac{\orange{\text{numerator}_1}}{\blue{\text{denominator}_1}}\times\dfrac{\blue{\text{denominator}_2}}{\orange{\text{numerator}_2}} \end{array}\]
Examples
\[\begin{array}{rcl}
\dfrac{\orange{3}}{\blue{5}} : \dfrac{\orange{2}}{\blue{3}} &=& \dfrac{\orange{3}}{\blue{5}}\times\dfrac{\blue{3}}{\orange{2}} \\
&=& \dfrac{9}{10} \\ \\
\frac{\tfrac{\orange{2}}{\blue{5}} }{\tfrac{\orange{3}}{\blue{7}}} &=& \dfrac{\orange{2}}{\blue{5}}\times\dfrac{\blue{7}}{\orange{3}} \\
&=& \dfrac{14}{15}
\end{array}\]
#\begin{array}{rcl}\displaystyle \dfrac{{{3}\over{2}}}{{{1}\over{2}}}&=&\displaystyle {{3}\over{2}} \times \dfrac{2}{1} \\&&\phantom{xxx}\blue{\text{dividing by a fraction equals multiplying by the reciprocal}} \\&=&\dfrac{3 \times 2}{2 \times 1} \\ &&\phantom{xxx}\blue{\text{multiplied numerator and denominator separately}}\\
&=& \dfrac{6}{2} \\ &&\phantom{xxx}\blue{\text{multiplied}}\\
&=& \displaystyle 3 \\ &&\phantom{xxx}\blue{\text{simplified}}
\end{array}#
Or visit omptest.org if jou are taking an OMPT exam.